Constructing a unique quadrilateral (Square)

The methods for constructing a square are precisely the same as for a rectangle but, in the case of a square, all four sides are equal
(a) Using rulers and compasses only, construct the square EFGH, with $E F=10 \mathrm{~cm}$
Show all construction clearly
(b) Measure and state the length of diagonals EG and FH State your observation
(c) Let the point of intersection of diagonals be represented by X .

Measure and state the length of:
(i) EX (ii) FX (iii) GX (iv) HX (v) State the angle EXF

State your observation
(d) Estimate
i) Triangles EXF and GXH
ii) Triangles EXH and GXF

State your observations

Above is a rough sketch to be constructed

CONSTRUCTION:

(a) First in constructing the square, the radius of the compasses is set to 10 cm to build its sides

Above can be seen the construction Square EFGH.
(b) Draw the diagonals EG and FH .

By measurement:
The length of the diagonal $\mathrm{EG}=14 \mathrm{~cm}$
The length of the diagonal $\mathrm{HF}=14 \mathrm{~cm}$
So $E G=H F=14 \mathrm{~cm}$
Hence the diagonals are equal in length.
(c) By measurement:

The length of $E X=7 \mathrm{~cm}$
The length of $\mathrm{FX}=7 \mathrm{~cm}$
The length of $\mathrm{GX}=7 \mathrm{~cm}$
The length of $\mathrm{HX}=7 \mathrm{~cm}$
So EX=FX=GX=HX=7cm
Hence the diagonals bisect each other
The size of angle XEF $=90^{\circ}$

Now $\Delta E X F \equiv \Delta G X H \equiv \Delta E X H \equiv \Delta G X F$ (S.S.S)
Hence four congruent triangles are formed by the diagonals

