

TABLE OF CONTENTS

- Egestion
- Excretion
- Excretory Organs
- Excretory Products
- The Kidney
- How the Kidney Excretes Urea
- The Kidney Tubule / Nephron
- The Bladder
- Osmoregulation

TABLE OF CONTENTS

- Kidney Failure
- Kidney Dialysis
- Kidney Transplant
- How the Body Loses and Gains Water
- Homeostasis
- Negative Feedback
- The Skin and Temperature Control
- Endotherms and Ectotherms
- Excretion in Plants

The passing out of undigested food through faeces

EXCRETION

- The passing out of metabolic waste
 - Metabolic waste is waste that was made in the body
 - CO_{2,} sweat and urine

Egestion = FAECES

So:

Excretion = METABOLIC WASTE

EXCRETION

- The passing out of metabolic waste
 - Metabolic waste is waste that was made in the body
 - CO₂
 - Sweat
 - Urine

EXCRETORY ORGANS

• Lungs - CO₂

Skin - Sweat

• Kidneys - Urine

EXCRETORY PRODUCTS

• CO₂

Ourea

CARBON DIOXIDE

• CO₂

 Made in the mitochondria of all living cells during respiration

Carbon dioxide leaves the body when we breathe out

- Made in the liver from excess proteins
- Excreted mainly through the kidneys
 Urine
- Some urea is also lost in sweat
- Sweat and Urine both contain three substances:
 - water, salt, urea
 - Urine = water + urea + salt
 - Sweat = water + urea + salt

THE KIDNEY

- 2 kidneys (left and right)
- They are in the abdomen
- Two main functions:
 - 1) to remove toxic waste urea
 - 2) to control the amount of water in the blood (osmoregulation)

• Receives blood from the **renal artery**

 Contains thousands of nephrons that filter/ strain/ clean the blood to remove toxic substances

 A long tube called the ureter carries urine (containing waste) from the kidney to the bladder

HOW THE KIDNEY EXCRETES UREA

- The renal artery brings blood to the kidney
- The blood then passes through smaller arteries inside the kidney
- Each smaller artery leads to a nephron/ tubule
- Each nephron is approximately 12-14mm in length
- Each kidney has approximately 1.5 million nephrons
- The <u>nephrons/ tubules</u> are the exact place where the blood is cleaned

- Has five main parts:
 - The Bowman's Capsule
 - The 1st Convolution/ 1st Coiled Tubule
 - The Loop of Henle
 - The 2nd Convolution/ 2nd Coiled Tubule
 - The Collecting Duct

• The Bowman's Capsule

- Very small molecules
 - water, salt, glucose, urea, and amino acids
- Pass out of the blood
- Enter the tubule/ nephron
- These small molecules now form a <u>filtrate</u> as they pass through the nephron

• The Glomerulus

- This is the cluster of blood vessels inside the Bowman's Capsule
- Ultra-filtration takes place here
 - Small particles leave the blood and enter the nephron

The First coiled (convoluted) tubule

- Has a lot of microvilli
- This provides a large surface area for absorption
- Useful substances are reabsorbed:
 - Glucose
 - Amino Acids
 - Some water
 - Some salt
 - These go back into the blood to be used by the body

• The Loop of Henle

Water is reabsorbed into the blood

It is long

• So an adequate amount of water can be reabsorbed

• The Second coiled (convoluted) tubule

- If the body still does not have enough water, water will be reabsorbed here
- The body gets rid of ammonium ions and some drugs from the blood by releasing them into this tubule

The Collecting duct

- This is where the liquid (urine) is collected
- Urine contains water, salt, and urea
- It has no glucose (sugar)
- If the body needs more water, it will be reabsorbed here
- From the collecting duct, the urine travels through the ureter to the bladder

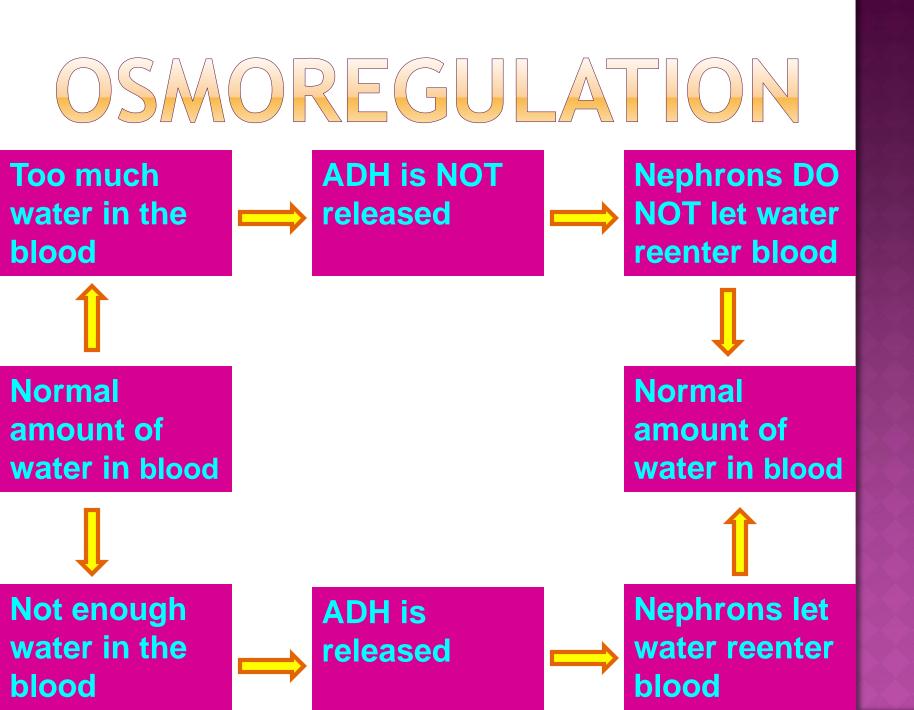
THE BLADDER

 A muscular sac that holds between 600 and 800 cm³ of urine

 A sphincter muscle at the opening of the urethra allows us to control the opening of the bladder

• Urea (Urine) goes from:

• Kidney \rightarrow ureter \rightarrow bladder \rightarrow urethra


controlling the amount of water in the blood

 The kidney controls the amount of water in the urine/ blood

- As the filtrate passes through the nephron water is reabsorbed back into the blood
 - The amount of water reabsorbed is based on how much water the body needs

- The hypothalamus in the brain is responsible for detecting the amount of water in the blood
- If there is <u>NOT ENOUGH</u> water in the blood, a hormone called ADH (Antidiuretic hormone) is released from the brain and travels to the kidneys
 This is on a hot day when the body loses water in sweat
- ADH causes the walls of the nephron to let more water pass back into the blood
 - So less water passes out in the urine
 - The urine is concentrated (yellow and has a strong smell)

- If there is <u>TOO MUCH</u> water in the blood, <u>ADH</u> (Antidiuretic hormone) is <u>NOT</u> released
 - This is on a cold day or when you drink a lot of water
- The walls of the nephron <u>DO NOT</u> allow a lot of water to be reabsorbed back into the blood
 - So more water passes out in the urine
 - The urine is dilute (watery and clear)

KIDNEY FAILURE

- There are two types of treatment:
 - (1) Dialysis and the artificial kidney
 - (2) Kidney Transplant
- The kidney removes toxic substances from the blood
- If the kidney does not clean the blood, the individual will die

KIDNEY DIALYSIS

A patient is attached to a kidney dialysis machine

- A tube is inserted into the patient's vein (inside the hand)
- Blood then passes from the patient into the machine
- The machine cleans this blood
 - Removes the urea
- The clean blood is then returned to the patient's hand via another tube
- This is done once or twice a week

KIDNEY TRANSPLANT

 A healthy person (donor) gives one of his/ her kidneys to the patient (recipient)

- A surgeon performs the operation
- A kidney transplant is better than kidney dialysis
 - It is cheaper in the long run
 - The patient can live a normal life (no frequent hospital visits for dialysis)

HOW THE BODY LOSES AND GAINS WATER

- LOSES WATER
 - Exhaled air
 - Sweat
 - Urine
 - Faeces

- GAINS WATER
 - Food
 - Drink
 - Respiration

the ability of the body to maintain <u>constant internal conditions</u> <u>despite</u> the external conditions

• Controlled by two main systems

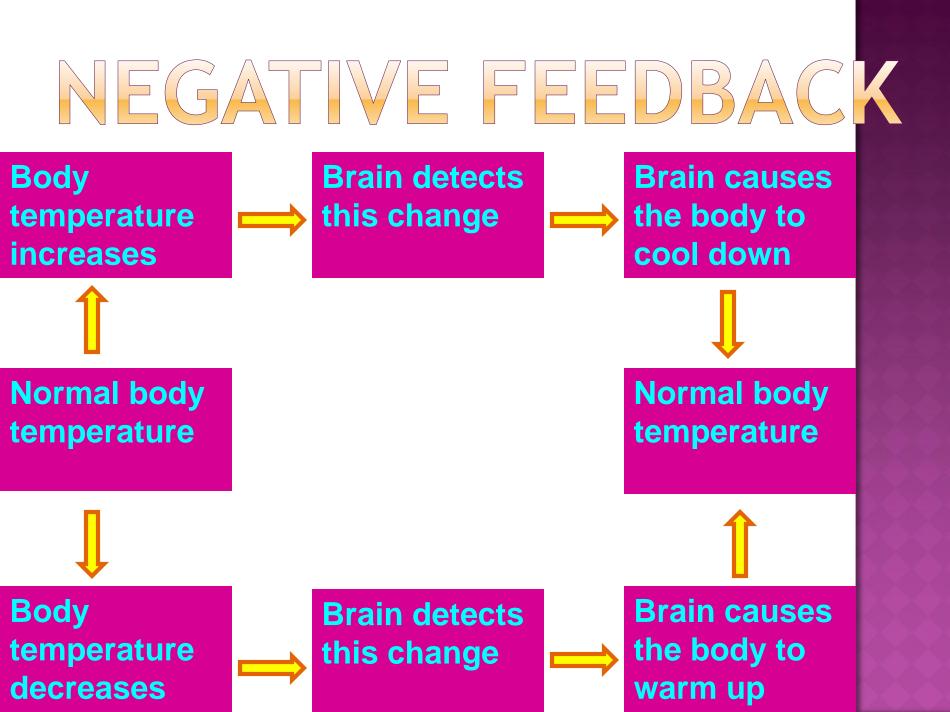
• NERVOUS and HORMONAL

- Energy levels
 - When we have little energy left, we consume food
 - Therefore the energy level in the body is restored to normal

Body temperature

- When the body is too hot, we sweat
 - This cools us down and normalizes the body temperature
- When the body is too cold, we get goose bumps and start to shiver
 - This warms us up and normalizes the body temperature

- Water levels
 - If there is <u>too much</u> water in the blood
 - No ADH is released
 - We urinate more often
 - If there is <u>not enough</u> water in the blood
 - ADH is released
 - We urinate less often


• Breathing rate and Heart rate

- When we exercise or are anxious or afraid, we breathe faster and the heart beats faster
 - This allows us to take in more oxygen and to release more carbon dioxide
 - This allows the heart to pump more oxygen around the body

- Hormone levels
 - If there is <u>too much</u> glucose in the blood
 - Insulin is released
 - Insulin changes the glucose into glycogen
 - If there is <u>not enough</u> glucose in the blood
 - Glucagon is released
 - Glucagon changes the glycogen into glucose

NEGATIVE FEEDBACK

- When a condition in the body changes from the norm, the brain causes the body to change to bring the condition back to normal
 - E.g. if the body temperature increases
 - Sweating cools down the body

the skin and temperature control

THE SKIN

- Largest and heaviest organ
- Contains sense organs
 - touch, temperature, pressure, pain
- Prevents the entry of pathogens
- Protects us from the Sun's harmful UV rays
- Excretes urea
 Sweat
- Controls body temperature

COOLING DOWN

• We sweat a lot

- The sweat picks up the heat on the skin
- The sweat evaporates from the skin and carries away the heat
- Vasodilation Capillaries get wider and carry more blood to the skin
 - The blood contains heat which escapes from the surface of the skin

• The hair on the skin lies flat

- There is no layer of air close to the skin
- No heat is trapped close to the skin

WARMING UP

• We do not sweat a lot

- Vasoconstriction Capillaries get narrow and less blood flows to the skin
- The hair on the skin stands straight
 - There is a layer of air close to the skin
 - Heat is trapped close to the skin

ENDOTHERMS AND ECTOTHERMS

ENDOTHERMS

- Animals that can control their body temperature and keep it constant
 - Humans control their body temperature so that it is usually around 37°C

ECTOTHERMS

 Animals that can not maintain a constant body temperature

 Their body temperature varies according to the external temperature
 Lizards, fish

EXCRETION IN PLANTS

Waste is excreted through the yellowing leaves of plants

EXCRETION IN PLANTS

 Plants excrete waste gases produced during photosynthesis and respiration

- Daytime Photosynthesis:
 CO₂ + H₂O → glucose + O₂
 Oxygen exits through the stomata
- Nighttime Respiration:
 - Glucose + $O_2 \rightarrow CO_2 + H_2O$
 - Carbon dioxide exits through the stomata

